首页> 外文OA文献 >Remote Control of Neuronal Signaling
【2h】

Remote Control of Neuronal Signaling

机译:神经元信号的远程控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A significant challenge for neuroscientists is to determine how both electrical and chemical signals affect the activity of cells and circuits and how the nervous system subsequently translates that activity into behavior. Remote, bidirectional manipulation of those signals with high spatiotemporal precision is an ideal approach to addressing that challenge. Neuroscientists have recently developed a diverse set of tools that permit such experimental manipulation with varying degrees of spatial, temporal, and directional control. These tools use light, peptides, and small molecules to primarily activate ion channels and G protein-coupled receptors (GPCRs) that in turn activate or inhibit neuronal firing. By monitoring the electrophysiological, biochemical, and behavioral effects of such activation/inhibition, researchers can better understand the links between brain activity and behavior. Here, we review the tools that are available for this type of experimentation. We describe the development of the tools and highlight exciting in vivo data. We focus primarily on designer GPCRs (receptors activated solely by synthetic ligands, designer receptors exclusively activated by designer drugs) and microbial opsins (e.g., channelrhodopsin-2, halorhodopsin, Volvox carteri channelrhodopsin) but also describe other novel techniques that use orthogonal receptors, caged ligands, allosteric modulators, and other approaches. These tools differ in the direction of their effect (activation/inhibition, hyperpolarization/depolarization), their onset and offset kinetics (milliseconds/minutes/hours), the degree of spatial resolution they afford, and their invasiveness. Although none of these tools is perfect, each has advantages and disadvantages, which we describe, and they are all still works in progress. We conclude with suggestions for improving upon the existing tools.
机译:神经科学家面临的一项重大挑战是确定电信号和化学信号如何影响细胞和电路的活动以及神经系统随后如何将该活动转化为行为。以高时空精度对这些信号进行远程双向操纵是解决这一难题的理想方法。神经科学家最近开发了一套多样化的工具,可以通过不同程度的空间,时间和方向控制进行此类实验操作。这些工具使用光,肽和小分子来主要激活离子通道和G蛋白偶联受体(GPCR),从而激活或抑制神经元放电。通过监视这种激活/抑制的电生理,生化和行为效应,研究人员可以更好地了解大脑活动与行为之间的联系。在这里,我们将介绍可用于此类实验的工具。我们描述了工具的开发并重点介绍了令人兴奋的体内数据。我们主要关注设计者GPCR(仅由合成配体激活的受体,仅被设计药物激活的设计者受体)和微生物视蛋白(例如Channelrhodopsin-2,halorhodopsin,Volvox Carteri channelrhodopsin),但同时也介绍了其他使用正交受体的新型技术配体,变构调节剂和其他方法。这些工具的作用方向(激活/抑制,超极化/去极化),起效和偏移动力学(毫秒/分钟/小时),提供的空间分辨率的程度和侵入性不同。尽管这些工具都不是完美的,但我们都描述了每种工具的优缺点,并且它们仍在开发中。最后,我们提出了一些改进现有工具的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号